
The FTIO Benchmark

Frederick C. Fagerstrom Christopher L. Kuszmaul

December 27, 1999

Contents

1 Introduction 2

2 Design 2

Implementation 3
3.1 Overview ............................................... 3

3.2 Tools .................................................. 3

3.2.1 MPI .............................................. 3

3.2.2 FFTW ............................................. 4

3.2.3 perfex ............................................ 4
3.9.4 PBS .............................................. 4

a.a Input Parameter ........................................... 4
3.4 Initialization ............................................. .5

3.5 DFT Series .............................................. 5

3.6 Transposition ............................................. 5
3.7 "verification .............................................. 6

4 FTIO Benchmark Meets Criteria

5 FTIO Performance on SGI Origin2000 6

5.1 I/O Fraction ............................................. 6

5.2 Cycles per flop ............................................ 7

5.3 Determining the Input Parameter .................................. 7
5.3.1 Hypothesis .......................................... 7
5.3.2 Method ............................................ 7

5.3.3 Secondary Goal ......................................... 7
5.3.4 Results ............................................ 7

5.4 Benchmark Results .......................................... 7

5.5 Specified Matrix-Size Benchmark Results ............................. 8

6 Conclusion 8

6.1 Acknowledgments ........................................... 8



Abstract

We introduce a new benchmark for measuring the performance of parallel input/ouput. This benchmark has

flexible initialization, size. and scaling proporties that allows it to satisfy seven criteria for practical parallel

I/O benchmarks.

We obtained performance rcsuhs while running (m the, a SGI Origin2000 computer with wmous numbers
of processors: with 4 processors, the performance was 68.9 Mflop/s 1 with .52 of the time spent on I/O. with

8 processors the performance was 139.3 Mflop/s with .50 of the time spent on I/O, with 16 processors the

performance was 173.6 Mflop/s with .43 of the time spent on I/O. and with 32 processors the performance

was 259.1 Mflop/s with .47 of the time spent on I/O.

1 Introduction

The NAS _ Parallel Benchmarks [11 have set the standard for measuring performance of distributed computer
systems. These benchmarks do not measure I/O. A small extension of the NAS Benchmarks, called NHT-1

I/O [2], has provided a valuable, if limited window into the performance of I/O on parallel systems. We have
further extended the NAS Benchmarks to include a full out-of-core implementation of the FT Benchmark.

In [3], six criteria are presented as characterizing an ideal I/O Benchmark. For parallel computing,
the absolute I/O performance matters, but relative I/O performance is often as important. A subset of the

criteria in [3] and two additional criteria are given for a practical I/O Benchmark of relative I/O performance

on parallel systems:

• The benchmark should provide information about any performance weakness in the system.

• The benchmark should scale well both in terms of the number of processors and the size of the problem.

• The benchmark should not favor one particular system architecture over another.

• The benchmark should maintain a tight specification.

Two criteria from [3] that are not suited for a parallel I/O Benchmark are that the benchmark should

be I/O limited, and that the benchmark should be useful for predicting performance for a wide range of

applications.
The benchmark should stress I/O, but not be I/O limited. I/O is rarely done alone, without inter-

spersed computations or parallel communication, and therefore a benchmark that strives to return relevant

performance data should use I/O similarly to how it is actually used by applications.
Although it would be desirable for an I/O benchmark to be useful for predicting performance of a wide

variety of applications, systems are generally used for a specific application and optimal I/O performance

I/O performance for that application matters most. A more focused benchmark will give more relevant
results.

In addition, we value following criteria: The benchmark should not be independent of the balance between

computation, interprocessor communication and I/O speeds. Rather than having the benchmark I/O-bound,

it should give an upper bound of the performance of out-of-core applications. The benchmark should report
relative performance---the system balance is almost as important as the absolute performance, since balance

speaks to scalability.

2 Design

In practice, a good I/O benchmark indicates that one I/O system is better than another for a specific type

of computation. The FTIO benchmark gauges the relative performance of I/O to non-I/O operations while

performing a 2-dimensional Discrete Fourier Transform (DFT). The FTIO stores most data out-of-core and

reads in and operates on only small segments of the data at once.

tMflop/s is million floating point operations per second.
2NAS is Numerical Aerospace Simulation Facility'.



A 2-dimensionalDFT isdefinedasfollowswhere$(m,n) specifies the element at position (rn, n) in the

3Ix.V input matrix and ._:¢A'. l) specifies the element at position (k, l) of the 3,[xN output matrix:

M - I N- t

rn=l rt=0

(i)

with

[vl'M = e -¢'z-i12'r/M)

W,v = e -'/--T{''_/'¢)

Thus, to perform a 2-dimensional DFT, it is sufficient to perform two sets of 1-dimensional DFTs, one

on the input matr}x's rows and then one on the matrix's columns or vice versa.

Basing the FTIO on the DFT is reasonable. The FTIO Benchmark's goal is to gauge the I/O perfor-

mance during physical modeling and simulation calculations that involve data that must be stored out-of-

core. Large numerical calculation problems rely on reading in small portions of data at once. The reads
may be done sequentially, but are often not, and therefore factoring in the cost of alternating between seek

operations and read/write operations is important. The 2-dimensional DFT is well-suited for an implemen-
tation that involves both seeking and sequential reading/writing of coherent chunks of data. Furthermore,

the i-dimensional phase involves interprocessor communication and calculation as would the computation

phase of a more general class of algorithms that would include many used for physical modeling or computa-

tional fluid dynamics. Although the topologies of communication or the pattern of file access in any specific

computation may differ from that of the DFT, the similarity in algorithms makes the results relevant.

One implementation for the 2-dimensional DFT is to perform a series of 1-dimensional DFTs--one to

each row of the matrix, transpose the matrix, and perform another series 1-dimensional DFTs to the rows
of the matrix. Given that ,_(m, n) specifies the input matrix, the output matrix is specified by ._.'(l, k), that

is, the transpose of the output matrix given in (1).

3 Implementation

3.1 Overview

The FTIO Benchmark performs a 2-dimensional Fourier transform on a large set of data partitioned among

the various processors used for computation. This section includes mention of the Tools (3.2) used to
implement the FTIO, explanation of the FTIO's input parameter (3.3) and discussion of the implementation

for each section of the FTIO computation: Initialization (3.4), DFT Series (3.5), Transposition (3.6) and

Verification (3.7).

3.2 Tools

The FTIO Benchmark was written in C using the Message Passing Interface (MPI) and the Fastest Fourier

Transform in the West (FFTW). The program perfex was used to collect cycle and floating point operation

(flop) count data for the FTIO Benchmark, and the Portable Batch System (PBS) was used to submit FTIO

to the SGI Origin2000 Cluster.

3.2.1 MPI

*IPI is a library specification standard for message-passing on massively parallel machines and on workstation

clusters. Using MPI, data is explicitly distributed among the processors. The MPI standard and related

documents are available [5]. FTIO uses MPI to transfer data among processors and to time computation,

communication and I/O.
Data-transfer for the Transposition phase is done using MPI_Sendrecv_.replace() which is used to im-

plement sinmltaneous data-exchanges between processors. During the verification phase, right before FTIO



exits,MPI_Send()andMPIAtecv()areusedto transferverificationandoutputdatato processor0. FFTW
DFT duringtheDFT Seriesis theonly other place where interprocessor communication is used.

Timing is done based on wall time, not processor time. The function MPI_Wtime() is used before and

after tile region of code that is going to be timed. Because interprocessor communication and [/O reads
and writes 3 are blocking, the timip.g data is accurate. The runtime of the FTIO progrant (lifters from the

runtime returned as part _,f the benchmark because the benchmark does not include overhead for program

startup and shutdown for running FTIO which includes MPI_Init () and MPI_.Finalize().

3.2.2 FFTW

FFTW is a C subroutine library for computing the DFT of coinplex or real vectors. FTIO uses the FFTW

routines for computing the DFT of a complex, 1-dimensional series of data distributed among the processors

using MPI. Good FFTW documentation is available [4].
FFTW uses a data-structure called a plan to perform a DFT. The plan is constructed to perform a forward

DFT which means that II.x. = e -v --_12,r/N) rather than II'x = e '/=r{'-'w'v). is used in the transform: 7t'(k) =

}--7_;,=t -\'(n)tI',,_ k. Estimation rather than measurement is used to determine the fastest plan for performing
the DFT. Since only two DFTs are performed, the time to perform the measurement is greater than the

increase in performance it would yield. Also, using measurement may result in a plan that distributed the

data among the processors in a manor incompatible with the transpose algorithm.

3.2.3 perfex

The utility perfex can be used to obtain information on hardware counters. During the development and

testing of FTIO, we used perfex to obtain the number of cycles and flops used by the executing code. To

insure the flop count returned is right and does not undercount due to the presence of a MADD 4 instruction

on SGI Origin2000 architecture, FTIO is compiled with the option -TARG:madd=0FF. Also, using perfex

required a flag in the PBS script.

The perfex command is executed as follows to count both cycles and flops:

perfex-mp -e 21

3.2.4 PBS

PBS is a flexible batch queuing system [6]. An example script for queuing a job is given below:

#PBS -I ncpus=64
#PBS -i walltime=1200

#PBS -i hpm=l
cd $TMPDIR

mpirua -np 64 perfex -mp -e 21 /u/fredf/finftio/ftio 8

The actual number of processors used (ncpus=64) and the number of processors perceived by MPI (-np

64) are both 64; the perceived and actual number should be the same for FTIO benchmarking. The walltime

is in seconds. The hpm=l is required by perfex. The $TMPDIR should be the location of the disk where the
processors temporary files will be kept. The FTIO Benchmark will test I/O performance of the I/O-space

specified by $TMPDIR. The command /u/fredf/finftio/ftio 8 executes the benchmark and passes it the

input parameter 8.

3.3 Input Parameter

The input parameter determines the width/height of the square matrix used by the FTIO Benchmark. The

input parameter is passed in as a command-line argument, and determines the width/height of the matrix

N. Let i be the input parameter, and let c be the number of processors used (perceived by MPI). Then

aOutput is flushed within the write timing-blocks.

_.MADD is a combined multiply and add in one instruction.



.\r = ilc2. Because the FFTW plan must specify that data be distributed evenly among the processors, i

and c must satisfty the two assertions: eli" and i s ___c. If either assertion fails, the FTIO Benchmark will not

run. If i-" is too small or if i2 is not divisible, then FFTW does not consistently distribute the date correctly.

3.4 Initialization

During the initialization phase, each processor calculates and saves to disk its portion of the input matrix.

With the matrix size N specified by the input parameter, the function Y:(i.j) defines the values of the Nx.V

input matrix where i is the colunm and j is the row:

?_(i. j ) = e v'---T,-'il/x + e_-_("-,_l/,_" + imp(i, j) ,- .spike(i, j) (2)

with 1 <i< N, l_<j_<.V, and

1 ifj =(i+l) mod.Vimp(i,j)= 0 otherwise

1 if (i = 0) AND (j = _)spike_i.j)= 0 otherwise

The given function does not become sparse during computation: therefore a system that can take advan-

tage of simple compression of all-zero data arrays in I/O is not favored. There is also a quickly-calculatable

function that returns the values of the output matrix which is used for Verification.

3.5 DFT Series

A DFT series is used after initialization to calculate the DFT of each row of the matrix, and then again after

transposition to calculate the output matrix.

During the DFT series, each row's DFT is calculated: Each processor reads in its section of the row and
uses an FFTW routine to calculate the DFT of the row. The DFT calculation is in-place; thus after the

DFT each processor contains its portion of the result in-core. The processor then saves the result to disk.

3.6 Transposition

The transpose is done by dividing the matrix into Squares. The elements in each Square are transposed, and

then the Squares themselves are transposed. The algorithm is based on an extension of the implication (3).

M = C D ==* "_Ir = By Dr (3)

where A, B, C, and D are rectangular sub-regions (matrices) that tile s M

Transposing the elements in a Square is done without interprocessor communication because each Square

resides on a single processor, and is carried out by compartmentalizing the elements into Mini-Squares, as

illustrated in Figure 1. Each Mini-Square is read into memory, transposed and then written out to the proper

transposed location: transposing the elements of a square is also based on the implication (3). A temporary
buffer is used to read in the Mini-Square that has not yet been transposed, while its transposed conjugate 6

overwrites it. Any Mini-Square that is its own conjugate ties along the Main Diagonal and is written to the
same location from which it was read.

Once the elements in each Square have been transposed, entire Squares are exchanged. Every processor

must specify which of its Squares to exchange and with which processor to exchange; thus a scheme based

on Diagonals is used. (Figure 1 contains an example of the use of Diagonals.) Each processor iterates

throughout the Diagonals, and a _ven Diagonal specifies which Square will be exchanged. If the Square to

exchange is number i, then the processor with which to exchange is processor number i. MPI is used to

exchange data.

5A set of sub-regions tile a matrix M if every element of ,lI is in one and only one sub-region.

6The conjugate (.Mini-)Square of a (Mini-)Square at location (x,y) is the (Mini-lSquare located at (y,.r).



3.7 Verification

During the verification phase, each processor uses the verification function (4) to calculate the difference

between the output value in the matrix and the expected value. The total difference is reported in the

output and can be used to gauge the accuracy of the system's calculations. The function expected(i.j)
defines an .VxN alatrix where i sp<_:ifies the cohmm and j specifies the row.

expected(i, j l = e -'/=-r(''-_"/'v + diag(i, j) + spikes(i, j)

with 1 <i< N. 1 <_j <_.V. and

[ e - v -_1( 2 :tj ),/N

diag(i.j) = 0

{,spikes(i, j) = 1
0

if(i+j) mod N=0
otherwise

if(i= 1) AND (j=0)

if(i=0) AND (j=l)
otherwise

(4)

4 FTIO Benchmark Meets Criteria

The I/O-time ratio returned will indicate how much I/O is slowing down the computation. For example, if

the I/O Fraction is significantly above .5, then an emphasis should be placed on increasing I/O performance.

FTIO is designed not to take advantage of the performance on any specific system. FFTW estimate is

used rather than measure _o provide a moderate level of system-tailored performance enhancement. The

rest of the code. however, is written to make it difficult for one system to do unusually well due to some

narrow optimization.

FTIO scales well in terms of the number of processors and the size of the problem. Because FTIO results

are consistent throughout a range of matrix sizes, it is not necessary to run extremely large-scale runs, as
a sufficiently large run is much smaller. Also, the FTIO may" be run on an arbitrary number (within the

constraints of MPI) of processors greater than 1. The matrix size can also be made smaller or larger by
varying the input parameter.

The FTIO Benchmark is fixed and specified. Specification of running environments and system charac-

teristics must be included whenever reporting results of the FTIO Benchmark.

The FTIO returns the I/O Fraction which is a measure of I/O's relative performance.

5 FTIO Performance on SGI Origin2000

FTIO was run using 4, 8, 16, and 32 processors on an SGI Origin2000 Cluster with 64 195 MHZ IP27

processors each having 250 .MB of memory. The disks available for I/O were two 100 GB scratch-space disk

arrays. Each disk array was set up to be equally accessible by any processor in the cluster. To determine

whether it would be possible to obtain representative data by running FTIO on relatively small matrices, we

ran FTIO using a range of input parameters to observe how the I/O Fraction (5.1) and Cycles per flop (5.2)

change with the matrix size. We estimated the optimal matrix size based on results from 5.1 and 5,2, and

assembled benchmark results for the various numbers of processors (5.4). We also developed a benchmark

size-speciL'iag function, assembled results using it and compared them to the optimal results (5.5).

5.1 I/O Fraction

Figure 2 shows the I/O Fraction obtained from running the FTIO on 4, 8, 16 or 32 processors with varying
input matrix sizes.

The data points graphed represent the averages of anywhere from 1 to 4 runs, and therefore anomalous

I/O-performance will not 'affect them as much as if they were all data points from single runs.
For all the matrix sizes the I/O Fractions obtained from the runs stay within certain bands that are not

more than .23 in width. The data points obtained while running on 4 processors stay within a band from



.44to .67. With 8 processors,thedatapointsstaywithinabandfrom.42to .59.The16-processordata
stay"withinabandfrom.37to .57.And the 32-processor data are in a band from .37 to .47.

5.2 Cycles per flop

A pattern _,mergos in the graphs of _'vcles per flop in Figure 3. Averages of the input data are used as in the
previous section.

The number of cycles per flop gives an estimation of how many cycles were spent on I/O or interprocessor

communication as opposed to floating point computations. The graphs suggest asymptotic convergence. The

smaller matrix sizes have less FTIO related computation to do and are therefore more affected by transient

I/O conditions and program startup/shutdown overhead.

Excluding the small matrix sizes the data stay within bands no wider than 121. With 4 processors, the

all data points except the first are between 16 and 55. With 8 processors, excluding the data point, data all

fall between 19 and 46. With 16 processors, excluding the first data point the band is much larger, spanning

from 22 to 143. And with 32 processors, excluding the first data point, the band is from 38 to 62.

Because there are bands that the data _tay within and the graphs indicate asymptotic convergence, it

may be possible to find the I/O Fraction that the FTIO would converge to by running the FTIO using a
smaller input parameter.

5.3 Determining the Input Parameter

5.3.1 Hypothesis

The hypothesis on which the FTIO is based is that there is some I/O Fraction that characterizes a system's

relative I/O performance Since the data presented using various input sizes have I/O Fractions that vary, it

may" be presumed that the hypothesis does not hold perfectly. Yet there is some convergence and regularity

to the I/O Fraction data and cycles per flop data obtained. I/O Fraction bands (5.1) suggest that some
representative I/O Fraction exists.

5.3.2 Method

The goal is to select a data point that is close to the middle of the band to find a representative I/O Fraction.

Data points with larger matrix sizes should be preferred over data points with smaller matrix sizes if their

I/O Fraction values differ significantly. However, if they are the same, the smaller matrix size will allow the

I/O Benchmark to run in less time.

5.3.3 Secondary Goal

FFTW DFT is based on code that runs faster or slower depending on the prime factor decomposition of

the input parameters. Thus FFTW DFT introduces another level of variation into the I/O Fraction data

obtained. Therefore, as a secondary goal the matrix sizes one chooses should result in input parameters that

have similar prime factor decompositions.

5.3.4 Results

We select the third data point of the 32-processor run data because it is the largest input value available.

The third data point for 32 processors corresponds to an input parameter of 24, which is an input parameter

that is associated with a valid input for each other number of processors, And thus, to satisfy the secondary

goal of having similarly prime factors for each input parameter to make performance comparison between the

different numbers of processors significant, we use 24 as the input parameter for every number of processors.

5.4 Benchmark Results

A more accurate I/O Fraction can be obtained by running the benchmark multiple times and then statistically

analyzing the results. Using the input parameter 24 determined in the previous section, we measured the I/O



Fractionmultipletimesforeachnumberof processors. The average of the I/O Fractions is the representative

I/O Fraction for the number of processors. Table 1 contains the results.

I Number of Processors 4 I 8 16 32

Estimated Input Parameter 24 24 24 24
J

[ Average of I/O Fractions .52 : .50 .43 .I7

i Total Mttop/s 68.9 la9.a 173.6 259.1
k

Table 1: I/O Fraction Benchmark Results

Graphs of the data collected for 4 processors. 8 processors, 16 processors and 32 processors are in Figure
4.

5.5 Specified Matrix-Size Benchmark Results

Graphing the I/O Fractions for various input parameters, then picking an input parameter (and thus matrix

size) large enough to yield accurate enough results takes time and relies on human judgment. It would be

better to have a way to pick the input parameter to directly calculate the I/O Fraction. We hypothesize

that the following function will give input parameters that yield good I/O-Fraction results:

inputParameter(c) = the lowest valid input parameter greater than or equal to v_ + 1 (5)

where c is the number of processors.

We collected I/O Fraction data using the input-parameter specified by (5) on 4 processors, 8 processors,
16 processors, and 32 processors. Graphs of the data obtained are in Figure 5 and the I/O Fraction data is
in Table 2.

Number of Processors 1 4 18 16 32

Specified Input Parameter 4 ] 4 8 8
Average of I/O Fractions .58 .51 .56 .39
Difference .06 .01 .13 -.08

Error 11.5c7c 2.0% 30.2% 17.0%

Table 2: I/O Fraction Specified Matrix-Size Results. Difference is the difference between the I/O Fraction

here and the corresponding I/O Fraction in Table 1. Error is the Difference divided by the actual I/O
Fraction from Table 1.

6 Conclusion

We have introduced criteria for a benchmark that returns I/O performance relative to the other operations

required for parallel computation such as interprocessor communication and floating point calculation. We

discuss the design and implementation of the FTIO Benchmark and conclude that it meets the criteria for

measuring relative I/O performance data. We test the performance of a SGI Origin2000 Cluster, and in the

process develop a function that specifies an input parameter that yields an I/O Fraction within 30% of the
actual benchmark value.

We look forward to having others try the FTIO Benchmark on a variety of systems. To obtain a copy of

the benchmark, please contact fyodor©nas.nasa.gov.
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and organization used for transposing. Each processor stores one column of Squares. The width of a Square
is 16 = 64/4, the width of the entire matrix divided by the number of processors. A Square is composed

of Mini-Squares which have width 4 = v/_, the square root of the Square's width. The Main Diagonal of

the entire matrix, or of a Square is indicated by shading. And the Diagonals used to organize interprocessor
communication are indicated by lines. For example, Diagonal 0 prompts the following actions: Square 0

on processor 0 remains stationary: Square 3 of processor 1 is exchanged with Square 1 of processor 3; and

Square 2 of processor 2 remains stationary.
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